Speaker: David M. Aronoff, MD

Case

PREVIEW QUESTION

54 year old man with 4 weeks of cough, low grade fevers, & left-sided chest pain. Received a liver transplant 11 months ago, complicated by rejection, requiring high dose steroids 4 months ago. He receives TMP/SMX three times a week. On exam, he is stable, chronically-ill appearing, febrile (101.1°F), has clear lungs and benign abdomen. Labs reveal a normal white blood cell count, slight anemia, & normal creatinine. Chest radiograph reveals hazy opacity in left lower lung zone. Chest CT reveals nodular air-space consolidation in the left lower lobe with central cavitation (image). Gram strain of bronchoalveolar lavage fluid reveals beaded gram positive filamentous organisms (image).

What is the most likely cause of this patient's pneumonia?

- A. Cryptococcus neoformans
- B. Histoplasma capsulatum
- C. Actinomyces israellii
- D. Nocardia farcinica
- E. Aspergillus fumigatus

What is the most likely cause of this patient's pneumonia?

- A. Cryptococcus neoformans
- B. Histoplasma capsulatum
- C. Actinomyces israellii
- D. Nocardia farcinica***
- E. Aspergillus fumigatus

Speaker: David M. Aronoff, MD

What are the most appropriate next steps in this patient's care?

- A. Initiate therapy with intravenous TMP/SMX
- B. Obtain a needle biopsy of the lung nodule to confirm the diagnosis
- C. Obtain a brain MRI & start amikacin & TMP/SMX _____
- Defer therapy until antimicrobial susceptibilities return

What are the most appropriate next steps in this patient's care?

- A. Initiate therapy with intravenous TMP/SMX
- B. Obtain a needle biopsy of the lung nodule to confirm the diagnosis
- C. Obtain a brain MRI & start amikacin & TMP/SMX***
- Defer therapy until antimicrobial susceptibilities return

Nocardia Infections

Microbiology:

- Beaded & branching gram-positive rods
- Partially acid-fast
- Aerobic (unlike anaerobic Actinomyces)
- More than 80 species & >40 cause disease in humans
- New phylogeny based on DNA sequence (formerly, N. asteroides complex): species names are lookups.
- Pathogenesis:
 - Inhalation (most common)
 - Direct inoculation through the skin

Clinical Features of Nocardia

Immunocompromised

- Glucocorticoid use, solid organ transplant, hematopoietic transplant, alcoholism, diabetes, CGD, CF, autoantibodies against GM-CSF (seen in autoimmune pulmonary alveolar proteinosis), anti-TNF therapy, ectopic ACTH syndrome, AIDS (less common)
 PJP prophylaxis may not prevent nocardiosis (& does not predict TMP/SMX resistance)
- Months to years after transplantation
- 90%: slowly progressive pneumonia with cough, dyspnea, & fever
 - Aspergillus similar; co-infections occur
 - Similar to cryptococcal disease & actinomycosis
 - Can disseminate to any organ (brain in particular: get MRI; can be asymptomatic!)

argalit I, et al. Clinical Microbiology and Infection (2021).

Clinical Features of Nocardia 10%: Skin infections from direct inoculation: nmunocompetent host in tropical region (N. brasiliensis) mmunocompromised patient who gardens or walks barefoot Sporotrichoid lesions Mycetomas: chronic, progressive, lower limbs, draining sinuses (similar to Actinomycetes & eumycetoma). "Madura foot"

Speaker: David M. Aronoff, MD

Nocardia Diagnosis

Diagnosis:

- Suggestive radiology
- Chest imaging: nodules, cavities, infiltrates with consolidation, effusions, ground-glass opacities • MRI brain: single or multiple abscesses
- Blood culture, BAL, biopsy
- Gram stain, modified acid-fast stain, culture
- Species identification with nucleic acid sequencing or MALDI: predictive of drug susceptibility
- 56-year-old woman post kidney-pancreas transplant & N. brasilienses
- Small lung nodules (white arrows), small right pleural effusion & subcarinal lymphadenopathy (black arrow)

· Axial CT image without contrast = solitary RLL mass with single focus of cavitation (arrow) & surrounding groundglass opacity

is: Computed Tomography Features at Diagno 1:224-229. August 2011. DOI: 10.1097/RTI.0b0136

· Right frontoparietal subcortical ring lesion with a central dark signal & bright ring enhancement (black arrowheads) in postcontrast T1-weighted image.

" QJM 107.12 (2014): 1041-1042

Nocardia cerradoensis

Total body CT & brain MRI of a solid organ transplant recipient with disseminated nocardiosis. (A) Sub-cutaneous nodules (white arrow) on CT-scan. (B) Nodule in the R upper lung seen on CT-scan. (C) Multiple round-shaped, contrast-enhanced lesions on gadolinium-enhanced T1-weighted brain MRI D, et al. Current Opi

Speaker: David M. Aronoff, MD

_ /\	loca	rdia	Iroat	mont
	luca	uia	IICal	

Susceptibility testing is a must Important because of drug resistance

- TMP/SMX is mainstay (skin = monotherapy; LZD/TZD alternatives)
- Empiric 2-drug combination therapy:
 - TMP/SMX + one of these:
 - Amikacin, imipenem/meropenem >> ceftriaxone/cefotaxime
 Linezolid/tedizolid ± imipenem/ceftriaxone/cefotaxime as alternate agents
- Empiric 3-drug combination therapy for CNS (TMP/SMX + IMI + Ami)
- Desensitize for sulfa allergy
- 2-6 weeks induction followed by 6+ months of oral TMP/SMX monotherapy stepo A & Clark NM. Clinical Transplantation. 2019;e13509 gait. et al. How do I manage rootandiosis?² Clinical Microbiology and Infection (2021).

	Table 3. Therapeutic management of nocardiosi	s according to clinical presentati	on.
Localization	Empiric Induction Treatment *,±	Maintenance Oral Therapy ±	Duration
Primary skin Pulmonary stable	TMP/SMX orally Linezolid orally	TMP/SMXM Minocycline Amoxicillin/clavulanate	6-12 month
Pulmonary moderate/severe	TMP/SMX iv + imipenem OR amikacin TMP/SMX iv + ceftriaxone ± linezolid Linezolid+ ceftriaxone OR imipenem	TMP/SMX Minocycline Amoxicillin/clavulanate	6-12 month
CNS involvement	TMP/SMX iv + imipenem ± amikacin TMP/SMX iv + imipenem + linezolid Linezolid + imipenem Imipenem + amikacin	TMP/SMX	9–12 month
Disseminated (>two organs without CNS involvement)	TMP/SMX iv + imipenem OR amikacin TMP/SMX iv + linezolid + imipenem OR amikacin Imipenem + amikacin	TMP/SMX Minocycline Amoxicillin/clavulanate	6–12 month

Nocardia Buzzwords

- Beaded
- Branching
- Brain (+ lung)
- Bactrim

Rhodococcus

art A., et al. IDCases, (2019

Clinical findings:

- Indolent pneumonia (80%) in immunocompromised host
- Fever, cough, hemoptysis, fatigue, subacute, pleuritic CP
- Nodules, thick-walled cavities, infiltrates, effusions possible
- Extrapulmonary dissemination possible (skin & brain)
- Mimic of TB, NTM, Aspergillus, Nocardia

Rhodococcus Rhodococcus • Typical patient: 33 year-old male PLWHA • T cell immunosuppressed (CD4 = 20) who lived on a PLWHA & CD4<100; organ transplant cattle & horse farm Inhalation or ingestion Farm, soil, manure or horse exposure in some patients Presented to hospital with • Microbiology: R. equi is the most common 1 month of fever, dry Gram positive, aerobe, coccobacillary cough, 13# weight loss, sweats & anorexia Colonies can be salmon pink ast: can be mistaken for *Nocardia* but no branching

al Mici

ae from W.V. Lin *et al. / Clii*

©2024 Infectious Disease Board Review, LLC

7 – Nocardia, Actinomycosis, Rhodococcus, and Melioidosis Speaker: David M. Aronoff, MD

Rhodococcus

Diagnosis:

- Culture followed by 16S rRNA, MALDI-TOF
- Tissue: gram stain, necrotizing granulomatous reaction; microabscess
- Blood cultures may be positive (>25%)
- Treatment:
- Combination therapy is recommended
- Macrolide or fluoroquinolone in combination with rifampin or in combination with 2 of the following: vancomycin, imipenem, linezolid, or an aminoglycoside x 2-3 wks then 2 drugs until clinical response complete (macrolide or FQ + a second agent)

Rhodococcus Buzzwords

- Short Gram positive rod (coccobacillus)
- Cavitary pneumonia (hemoptysis)
- Salmon pink colonies
- Advanced HIV/AIDS
- Horse / manure exposure

Case

DISEASE OF PREVIEW QUESTION

A 62 yr old sheep rancher from Northern Australia referred hospitalized for refractory pneumonia that failed to respond completely to multiple, prolonged courses of antibiotics over 3 months, leaving him with continued low-grade fever, productive cough & asthenia.

Gram negative rods noted in moderate abundance on sputum Gram stain & in sputum culture. Identification by automated system failed & isolate sent to referral lab.

Question

• Which of the following would have been a likely source of this infection?

- A. Hospital nebulizer while hospitalized in Australia (nosocomial superinfection)
- B. Water or soil from his ranch
- C. Coughing worker on his ranch
- D. Sick sheep on his ranch.

Question

- Which of the following would have been a likely source of this infection?
- A. Hospital nebulizer while hospitalized in Australia (nosocomial superinfection)
- B. Water or soil from his ranch***
- C. Coughing worker on his ranch
- D. Sick sheep on his ranch.

Melioidosis Microbiology & Epidemiology

Microbiology lab:

- Facultative intracellular GNR, Burkholderia pseudomallei
- Oxidase positive, non-fermenting GNR
- Characteristic bipolar staining with a "safety pin" appearance
- Melioidosis is highly endemic in Southeast Asia & northern Australia
 - Esp. Northeastern Thailand & northern Australia

Chakravorty A, Heath CH. Australian Journal of General Practice (Meumann EM, et al. Nat Rev Micro (2

Speaker: David M. Aronoff, MD

AN ASIDE

- If I Say Non-Fermenting GNR You Think of
- Pseudomonas aeruginosa
- Acinetobacter baumannii
- Burkholderia cepacia, B. pseudomallei
- Stenotrophomonas maltophilia
- Sphingomonas paucimobilis

Melioidosis Clinical Syndromes

Clinical findings:

- Acute infection can present with pneumonia, bacteremia & septic shock
- Metastatic abscesses: skin ulcers or abscesses more common than bone, spleen, brain, prostate
- Chronic infection presents like TB (cough, hemoptysis, night sweats)
- Can become latent & reactivate like TB (rare)

ersinga WJ, et al. Nat Rev Dis Primers (2018); Kottarathil M, et al. Indian J Tuberculosis (2024

Melioidosis Clinical Syndromes

Risk Factors:

- Infection occurs from exposure to contaminated soil or water by percutaneous inoculation, inhalation, or ingestion
- Risk factors = diabetes, alcohol use disorder, chronic renal & lung disease, corticosteroid therapy, malignancy, & thalassemia
- Acute infection more common than chronic infection
 Chakravorty A, Heath CH. Australian Journal of General Practice (2019)

Melioidosis in the US

- 2 unrelated people living in the Gulf Coast region of the southern US became sick with melioidosis two years apart—in 2020 & 2022
- Three samples from soil & puddle water in 2022 tested positive at CDC for *B. pseudomallei*

7 – Nocardia, Actinomycosis, Rhodococcus, and Melioidosis Speaker: David M. Aronoff, MD

Bacteria with "safety pin" appearance

- Yersinia pestis
- Vibrio parahemolyticus
- Burkholderia mallei & pseudoma
- Haemophilus ducreyi قjua; jf£ نابر
- Klebsiella granulomatis (granuloma inguinale)
- Pasteurella multocida

Melioidosis Diagnosis & Rx

- Diagnosis: Culture on Ashdown Medium
 Alert the lab you are concerned about this pathogen!
- Indirect immunofluorescence, lateral flow immunoassays & nucleic acid amplification tests have been developed; none have sufficient sensitivity to replace culture assays

Treatment: Treat all cases

 Mild disease: initial intensive IV therapy for two weeks followed by eradication therapy orally for 3-6 months

> For the most up al Melioidosis S

- B. pseudomallei resistant to penicillin, ampicillin, 1st/2nd generation cephalosporins, polymyxin, aminoglycosides
- TMP/SMX for postexposure prophylaxis

ga WJ, et al. Nat Rev Dis Primers (2018); Hemarajata P, et al. JCM (2016) k SJ, et al. EID (2008). Meumann EM. et al. Nat Rev Micro (2024)

- Meropenem or ceftazidime then tmp/smx for 3-6 months

Melioidosis: Buzzwords

- SE Asia (Thailand)/Australia
- Soil/water exposure (inhalation/inoculation/rainy season; post-tsunami injury)
- Pneumonia + severe sepsis/shock or multiple abscesses
- Can be years after exposure (not usually)
- Safety pins on methylene blue or Wright's stain; Gram negative rods
- Ashdown media
- Le Tohic, s., et al. European Journal of Clinical Microbiology & Infectious Diseases (2019)

Glanders

- Caused by Burkholderia mallei & is rare in humans
- Requires close contact w/ infected animals (horses, donkeys, mules)
- Bacteria enter through the eyes, nose, mouth, or skin wounds
- B. mallei is an obligate mammalian pathogen & must cause the disease to be transmitted between hosts
- Africa, Asia, Middle East, Central America, South America
- Similar presentation to melioidosis
 - ith ME, Gossman WG. Glanders And Melioidosis. [Updated 2017 Oct 6]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan.

Actinomyces Take-Aways

- Microbiology lab:
 - Gram-positive, anaerobic, non–spore-forming bacteria
 Part of the normal mucosal flora of the oral, gastrointestinal,
- respiratory, & genital tracts
 Actinomyces israelii most common species
- Produce sulfur granules
- Typical patient:
- Recent dental procedures
- Aspiration (thoracic)
- IUD (pelvic)

Actinomyces Take-Aways

- Clinical findings:
- Oral-cervicofacial more common>abdominal & thoracic infection
- Lumpy jaw
 - Slow growing mass, **ignores tissue planes**, can pus-out (necessitate), form sinuses, fistulas
- DDx: Cancer, TB, Nocardia
- Diagnosis:
 - Culture, histopathology (sulfur granules)
- Treatment:
 - Penicillins (PCN, ampicillin) x weeks to months

Sa;t)nl#-affl £s ifa;juv;t#a)a~n;#1

(artefacto cleft)/

Cn·≇£«uv}îl å Bajf£«uatnfl

Speaker: David M. Aronoff, MD

Actinomyces: Buzzwords

- Sulfur granules
- Dental work
- IUD
- Erosive mass
- Filamentous anaerobe

Actinomycosis Aspergillus, Zygomycetes Blastomyces, Coccidioides, Cryptococcus, Histoplasma Mycobacterium tuberculosis Nocardia Infectious emboli (SBE)

Toxoplasma
 Tumors

Lemierre syndrome (Fusobacterium)

Causes of Sporotrichoid Lesions Nodular lymphangitis Organism Exposure

Sporothrix schenckii	Gardening, soil, splinters, animal bites/scratches
Nocardia brasiliensis	Gardening, soil, splinters
Mycobacterium marinum	Aquarium, fish handling, water exposure
Cutaneous leishmaniasis	Living/traveling in endemic regions
Several others	Blasto/Cocci/Histo, Crypto, tularemia, Erysipelothrix, etc

THANK YOU

aronoff@iu.edu @DMAronoff (Twitter, Bluesky) david.aronoff (Insta, Threads)